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Abstract. Boundary height distributions of the two-dimensional Abelian sandpile model are 
studied in the self-organized critical state. All heighl probabilities me calculated expiicitly both 
at open and closed boundaries. The leading asymptotic term of the corresponding correlation 
functions is observed to behave as r-' when I + m. On the basis of eonfomal field theory 
predictions the bulk height correlalors are shown to have the Same critical exponents as boundmy 
ones. All heights seem to be identified with appropriate counterparts of the local energy operator 
in the zero-component Potts model. 

1. Introduction and results 

The concept of self-organized criticality (soc) introduced rscently by Bak ef al [l] is ex- 
pected to be the underlying cause of a variety of critical phenomena involving dissipative, 
nonlinear transport in open systems, such as earthquake structure, economics, light pulses 
from quasars, etc [2, 31. In these phenomena a system evolves stochastically into a certain 
critical state. It lacks therein any~characteristic length as well as timescale and obeys power- 
law distributions. The critical state is independent of the initial configuration of the system 
and, unlike ordinary critical phenomena, no fine tuning is necessary to arrive at this state. 

The Abelian sandpile model proposed by Bak et al turns out to be the simplest one 
that captures all essential properties of soc [e]. Another reason why a lot of attention 
has been paid to this model during last years is that the problem admits a purely analytic 
treatment [7-111. The number of distinct recurrent configurations of the Abelian sandpile 
on an arbitrary lattice is equal to the number of spanning trees on this lattice [9]. As to 
the latter, it can be derived by making use of the Kirchhoff theorem [ I 2  131. Providing 
an effective tool for investigating sandpiles, this theorem reveals their intimate relation to 
some statistical models, such as Potts, dense polymers, dimer. As the spatial soc structure 
is quite similar to that of critical states in statistical mechanics, the program for studying 
soc phenomena has to be along the lines of the usual statistical systems. Together with bulk 
critical exponents, the problem of determining the same surface quantities is an essential 
point of this program. 'It is of especial importance in the two-dimensional case when 
conformal field theory connects surface and bulk properties of the model [14, 151. 

The natural formulation of the Abelian sandpile model is given in terms of integer height 
variables zi at each site of a finite square lattice C. In a stable configuration the height zi 
at any site i E .C takes values 1,2,3 or 4. Particles are added at randomly chosen sites 
and the addition of a particle increases the height at that site by one. If this height exceeds 
the critical value Ai:, then the site topples, and on toppling its height decreases by A;i and 
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the heights at each of its neighbours j increases by -Aij. Here A is a discrete Laplacian 
matrix specifying the toppling rules with the following elements: 

. .  4 l = J  

li - j l  = 1 (1) A . . -  -1 
11 - [ 

0 otherwise. 
For proper sites i, j in the bulk of the lattice, the symbol li - j l  denotes the distance between 
sites i and j .  

To formulate the toppling rules at the boundary aL of the sandpile, we can set up two 
standard boundary-value problems for the Laplacian on a finite lattice L. 
(i) Dirichlet problem. Open boundary conditions, when Ail = 4 for i E aL, and, therefore, 

the sand particles an allowed to leave the system through the boundary. 
(ii) Neumann problem. Closed boundary conditions, when Ail = 3 for i E aL, and the 

sand particles cannot leave the system through 8.C. 
If all the boundaries are closed, any steady state of the sandpile is certainly impossible. 

Therefore, in considering the half-plane geometry, we start with a rectangular shape of the 
lattice L. Then, we impose open boundary conditions on all edges of the rectangle except 
one, where the boundary conditions of the types mentioned above are assumed. Further, 
we shift to this edge the zeros of column and row numbers and let all sizes of the lattice 
tend to infinity. In other words, we shall call boundary sites of the lattice those which are 
placed on the 'line edge' far from the corners of the lattice. 

The spatial structure of soc state is completely characterized by the set of all correlation 
functions: the probabilities 'Pa, a E {1,2,3,4) of finding the value zi = a  at a given lattice 
site i, two-point correlators Pab(r) for any sites i, j E L of respective heights a and b at 
a distance r apart, etc. The bulk height correlation function for unit height was studied by 
Majumdar and Dhar 181. To calculate all other bulk height probabilities, Priezzhev [lo] has 
recently developed a complicated technique based on @-graph enumeration. He has observed 
that, in spite of the local nature of height variables of a sandpile, their tree representations 
are essentially non-local with the exception of unit height. Unfortunately, &graphs are too 
complex to be calculated explicitly, even for two-point correlation functions. That is the 
reason why bulk height correlators have yet to be derived. Conformal field theory, never- 
theless, predicts an intimate relation between boundary and bulk properties of the model. So 
we may hope to obtain some information about the bulk correlators from the boundary ones. 

Studying the boundary effects in the Abelian sandpile has been initiated by our previous 
work [ l l ] .  However, only the unit height has been investigated therein. The purpose of 
this paper is to find all Boundary height correlation functions. We observe that, though 
Boundary height variables cannot be directly represented as local tree diagrams, they may 
be calculated as their linear combinations without any @-graphs. Our results are as follows. 

(i) The probabilities Pa are obtained 
at an open boundary 

9 42 320 512 
2 r 379 9x3 PI = - - - + - -- SS 0,103823 

'pz = -- + - - -+ - % 0.216571 

P, - - - + - - - 0.316225 

33 66 160 1024 
4 r KZ 9r3  

15 22 160 512 
4 r 3 r Z  9r3 

2 
P4=1---0.363380 

K 
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a t ~ a  closed boundary 

3 . L  
P 1 = - - - ~ 0 . 1 1 3 3 8 0  

Pz - * 0.318309 

4 x  
1 
x 
1 1  P3 = - + - 
4 x  0.568309. 

(ii) The two-point correlation functions 'Poh(r) decay according to the law: 
at an open boundary 

9 160 9472 + 81920 262144 1 
p , , ( r ) = p , +  ( xz ir3 9x4 ---j-+... 27n5 81r6 r4 

-+... 

1 
PM(r) = P;+ (-5) -p +... 
at a closed boundary 

3 
~ 1 3 ( r )  = PIP3 + (-2 + $! - $) + . . . 
pu(r) =P;+ (-$ + $ - $j + ... 
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( 5 )  Since all Boundary height correlators have the same critical exponent X I ,  = 2, they 
should correspond to the same quantity in a scaling limit, i.e. all heights can be identified 
with the same conformal field in an appropriate conformal field theory. Now, for all bulk 
height correlators to be described, it suffices to study any one of them in detail. The two- 
point bulk-correlation function P11(r) for unit heights calculated by Majumdar and Dhar 
[8] decays as r -4  for larger. Thus, we may conclude that the only critical exponent which 
corresponds, as mentioned above, to all bulk height correlators equals x = 2. Majumdar and 
Dhar [9] obtained a conespondence between the proper sets of configurations of a sandpile 
and the zero-component Potts model. In this way, the critical exponent x = 2 corresponds 
to the energy-energy correlator in the latter model. 

2. Trees representation of height variables 

The principal concept which provides a one-to-one correspondence between sandpile 
configurations and spanning trees on the lattice L is that of a forbidden subconfiguration 
(FSC). In accordance with Dhar 171 we define FSC as a set of lattice sites F E L, the 
corresponding heights of which satisfy the following inequalities: z j  4 number of the 
nearest neighbours of site j in the subset 3. The configuradons not containing any FSC 
are referred to as allowed configurations. Dhar has shown [71 that the number of distinct 
allowed configurations in the soc is given by the following simple formula: 

NA = det A (25) 
where A is the matrix of the toppling rules (i.e. discrete Laplacian). 

The following algorithm for finding FSC in a given configuration C has been proposed: 
consider a number of subsets 30.31, &, . . . , the initial one FO being the lattice L itself. 
Choose any site from Fo wherein the height exceeds the number of its nearest neighbours. 
Eliminating this site we obtain the next subset 71. The remaining elements of the sequence 
31, 3,, . . . are constructed in a similar way. If the lattice becomes empty as a result of 
this procedure, the initial configuration is allowed. Otherwise we obtain a certain subset 
F, wherefrom any site cannot be thrown out. This subset is nothing but FSC. Dhar called 
this procedure the ‘burning’ algorithm. After a slight modification it enables one to draw 
the spanning tree for a given allowed configuration. Moreover, there exists a one-to-one 
correspondence between allowed sandpile configurations and spanning trees. One can use 
this fact to compute the height probabilities. 

Following Priezzhev [IO] we subdivide. fixing the site io E L, the set of all allowed 
configurations into four parts SI, &, S3.5‘4, which are defined as follows: the configuration 
C belongs to 

SI, iff it remains allowed under any substitution zo = 1 , 2 , 3 , 4 ,  into io; 
S,, iff it remains allowed when zo = 2 , 3 , 4 ,  but becomes forbidden when zo = 1; 
&, iff it remains allowed when 10 = 3 , 4  but becomes forbidden when zo = 1,2; 
S4, iff it remains allowed only when zo = 4. 

The fact that for all admitted substitutions the number of configurations is equal leads 
to the following expressions for height probabilities: 

Here Ni is the number of configurations in the subset St. When the site io is located at the 
open boundary a general description of these subsets remains the same, but at the closed 
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boundary (where critical height equals 3) the set S4 is empty. Height probabilities in this 
case are expressed as follows: 

To formulate the Kirchhoff theorem, we now recall some definitions from graph theory. 

(a) A connected subgraph of a graph L which contains all its sites and has no cycles is a 
spanning tree. 

(b) A spanning tree with one site (the root) distinguished from all other sites by this only 
fact is called a rooted spanning tree. 

(c) Since the rooted spanning tree is a connected graph, there is a path from every site of 
it to the root. We may orient this path so that all its bonds will have arrows in the 
direction to the root. The acyclic property of the spanning tree provides the consistency 
of this procedure for all bonds of the tree. 

(d) If an oriented path from site i to the root passes through site j .  then site i is called a 
predecessor of site j .  A subtree containing all predecessors of a given site i will be 
referred to as a branch of the spanning tree growing from the site i .  Leaf is a branch 
of the spanning tree containing only one of its bonds. 

Kirchhoftheorem. 
from the root, the weight xij is ascribed, then the determinant of the matrix 

If to any bond of the graph L, whose adjacent sites i and j are different 

& 

& j ( x ) =  --x.. i and j are adjacent sites (28) 

l o  otherwise 

is a generating function of the rooted spanning trees on this graph. In particular, when 
xii = 1 for all i and j ,  this matrix coincides with the discrete Laplacian and its determinant 
gives the total number of rooted spanning trees. 

Now we may redefine the subsets SI, S,, S3, S, in terms of spanning trees. Let us 
first describe the subset SI. Here, for every allowed configuration the burning procedure 
eliminates the site io only after all its nearest neighbours. Hence the number of sandpile 
configurations of the subset SI equals the number of spanning trees which have just the 
only leaf attached to io and point in the direction of one of its nearest neighbours. 

Consider now the subset Sz; By definition, the substitution zo = 1 transforms an 
arbitrary configuration C of  this^ subset intoo a forbidden one. The resulting FSC comprises 
the site io and only one of its nearest neighbours (if it is not the case, then this configuration 
would be forbidden under the substitution zo = 2 as well). Let F(C) be the FSC obtained 
by the substitution zo = 1 in C. As above, the burning procedure first eliminates the 
nearest neighbours of site io which do not belong to F(C), second the site io itself, and 
finally the others sites of FSC. Therefore, the FSC is represented as a branch of the spanning 
tree, growing from the site io and containing only one of its nearest neighbours which is a 
predecessor of io. The others do not belong to the FSC and so they cannot be predecessors 
of site io. The total number of such trees is just equal to Nz. 

The description of subsets S3 (as well as S,) is quite similar to Sz. The only difference is 
that in these cases the predecessors of the site io are taken to be two (and three, respectively) 
nearest neighbours of this site. 
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3. Local and non-local tree diagrams 

The Kirchhoff theorem provides an effective tool to calculate local tree diagrams. Although 
the method of handling them is far from being novel, it is worth recalling its principal ideas. 

Any modification of the weights of a finite number of lattice bonds is called a local 
defect of the lattice. For example, deleting the bonds or inserting additional ones can be 
considered as a proper local defect. The difference between a discrete Laplacian of the new 
lattice A' and that of the initial one A is referred to as the defect matrix 6. The locality 
condition implies simply that only a finite number of the rows and columns of the defect 
matrix 8 have non-zero elements. 

Another important concept is that of a local tree diagram. We define it as a finite set of 
black and white arrows on the lattice bonds. Any spanning tree passing through all black 
arrows but not through the white ones is called compatible with this diagram. Given a local 
tree diagram, the problem we are interested in is to find the total number of compatible 
spanning trees. To solve this problem, we have to construct a matrix of the proper local 
defect by setting the weights of all bonds with white arrows to zero; whereas those with 
black arrows, to 6. Then, according to the Kirchhoff theorem, the highest term of the 
polynomial det A'(€) is just the number we are interested in. So the ratio of the number of 
spanning trees compatible with a given diagram and the number of all trees on the lattice 
1: is given by an easily calculable determinant 

Prob(6) = lim - det " = lim det(1f GB)/6" 
s+m 6" det A e-*= 

where n is the number of black arrows in the diagram, 1 is the unit matrix and G = A-' is 
the lattice Green function which depends on the boundary value problem for this Laplacian. 

For two such problems mentioned in the introduction the corresponding Green functions 
are given by the following expressions [ll]: 
for open boundary conditions 

for closed boundary conditions 

Here nl = 1,2, . . . labels the column and ml = . . .-2, -1,O. 1.2, . . . labels the row of site 
if = (nl, mr) E L and nz = 1,2, . . . labels the column and na2 = . . . - 2, -1.0, I,.?!,. . . 
labels the row of site iz = (nl ,  ml) E C m denotes the distance between sites i l  and iz 
along the boundary, m = ml - m2. 

Unfortunately, one cannot construct any reasonable local tree diagrams to represent 
height variables directly (except unit height). The problem is that height probabilities are 
determined by the number of predecessors amongst nearest neighbours of a given site. Local 
tree diagrams do not contain information like that. 

For our purpose we introduce here the concept of non-local tree diagrams. First we 
choose any site io E I: to be considered as a central site of the diagram. Now we define a 
non-local diagram as a finite set of black and white arrows on the lattice bonds (as for a local 
tree diagram) and, in addition, as a collection of black and white circles on the lattice sites. 
If a spanning tree passes through al l  black arrows but not through the white ones, and the 
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D (i a (I 

** *** *** *** *** *** ******* ******* ******* ******* 
c t & + 'g' + + + 

b b b c b b 
****e* ******* 

b 

9 

Figure 1. Diagram representation of SI, S2, S3, S4 at the open baundary of the lattice 

& 
._....._ ..______ -u+u+u 

-m+u+PB+m+n+q'fg 
OL o( OI 

& 
._.___.. ._._..__ __...... ..._.._. _ _ _ _ _ _ _ _  

7 B B B B 7 

& 
_...__.. __.._... .__..___ ...___.. _ _ _ _ _ _ _ _  _ _ _ _ _ _ _  

Figure 2. Diagram represenration of SI, SZ, S, at the closed boundary of the latrice. 

sites with black circles are predecessors of the central site, but those with white circles are 
not, then such a spanning tree will be called compatible with a given non-local tree diagram. 

The tree representations of height probabilities at the open and closed boundaries of 
the lattice are presented in figures 1 and 2. Here every fragment of the lattice represents, 
symbolically, the number of spanning trees compatible with a given non-local tree diagram. 
Stars denote an open boundary of the sandpile where sand grains are allowed to leave the 
system. In terms of spanning trees these sites are nothing but roots of the trees. The broken 
line in figure 2 denotes a closed boundary of the sandpile. Full lines are the bonds of the 
lattice. We eliminate the bonds having two opposite white mows on them. Black mows 
are oriented tree bonds, as mentioned above. Full circles are predecessors of the central 
site io but open ones are not. 

There is no general method to calculate non-local diagrams. It is surprising indeed that 
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******* ******* 

Id =B+ kzl 

Ld = @ +  ee’ 

1. 

d 6 

****c** 

2. &I =*KT 
b 

****** ****** 
3. 

d 

******* 
4. M =*Er 
5. hrl =**B 

**m = **@ 

f 
******* 

6. 

9 

7. ** * *** =p *% **F 
8. *** & *** sv *@ **F 
9. **’” = @ + **$ **F 

h 

I 

Figure 3. A system of linear equations on the non-local variables at the open boundary of the 
sandpile, 

those of them which appear in the definition of Boundary height probabilities are simply 
expressed in terms of local tree diagrams. To calculate them, we fist decompose local tree 
diagrams into non-local ones, as is clear from figures 3 and 4. As a result, we obtain a 
system of linear equations for the non-local variables (numbers of spanning trees compatible 
with non-local tree diagrams in these figures). Their number, however, is too large for this 
system to be solved immediately. 

For further progress we must find out some relationships between the non-local diagrams 
themselves. These relationships do exist. Important for us is the following point. Let us 
consider the non-local diagrams in figure 5. Different though these diagrams are, the 
numbers of spanning trees compatible with them are equal. Really, we may reverse all 
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._.._ _ _ _  
1. + 

3651 

5. 

c 

Figure 4. A system of linear equations on the non-local variables at the closed boundary of the 
sandpile. & &J 

4 4 4 4 

Figure 5. Though these diagnms look different, the number of spanning trees compatible with 
'them are equal. 

arrows of a spanning tree along the path joining sites i and j in figure 5(u) and switch at 
the same time an arrow pointing to io from the position i to the position j ,  thus obtaining 
a spanning tree compatible with diagram in figure 5(b).  So, we may transform every 
spanning tree compatible with one of these diagrams into that compatible with another. 
These arguments are quite general indeed. Now one may reduce a variety of non-local 
diagrams in figures 3 and 4 to a small number of distinct non-local variables labelled by 
latin and greek letters for open and closed boundary conditions, respectively. 

Finally, the following systems of linear equations are obtained for the non-local 
variables: 
for open boundary conditions 

512 352 60 
PrOb(1) = - - -+ - - 9  = d + b  9x3 3x2 x 

512 256 38 21 
Prob(2) = - - - + - - - = b 

9x3 3x2 n 4 
512 128 54 
9x3 79 x 

PIOb(3) = - - - + - - 6  = d + c  

512 64 24 
9n3 x2 jT 

Prob(4)=--+---+3=f 
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512 416 76 
Prob(5) = -- + - - - + 1 2 = e  

2048 192 152 
3rr 

9A3 3X2 72 

Prob(6) = - 9x3 - -' H Z  ~.+ - - 4 = 22 

+ 3 = 2 h +  f Prob(7) = -- - - - - 512 1280 112 
37r3 9722 37z 
512 1472 170 

Prob(8) = -- + - - - + 7 = h + k + g  

1024 1024 124 21 
Prob(9) = - - - + - - - = b+d  + 1  

3R3 972' 37z 

9R3 9a2 33T 4 
and for closed boundary conditions 

L 3  
Prob(1) = -- + - = p + q5 i r 4  

1 1  
2rr 4 Prob(2) = -- + -= p 

Prob(3) = 

Prob(4) = - - - = 8 

5 3  

1 1  

- = y + 6 257 4 

H 4  
5 3  

27r 4 
Prob(5) = - - - = E ~ .  

Here Prob(k) is the ratio of the number of spanning trees compatible with a local tree 
diagram, labelled by the number k in figures 3 and 4 to the total number of spanning trees 
on the lattice C. Calculation of the Green functions (30). (31) and determinants (29) for 
each of these local tIee diagrams leads to the above presented equations. 

A direct solution of the last two systems gives us the expressions (2)<8) for the height 
probabilities, presented in the introduction. 

4. Height correlations 

Calculation of the two-point correlation functions is quite similar in principle but more 
tedious in practice. Here we underline the principal distinctions from the previous case. 
Axing the sites io, j ,  E aL, we must subdivide the set of all allowed configurations into 
components s k f  which are defined as follows. The configuration C belongs to SKI, iff 
it remains allowed when zio 2 k and zj, 2 1, but becomes forbidden otherwise. Here 
k, 1 E {l,  2,3,4) for open boundary conditions and k, 1 E {I, 2,3] for closed ones. Since 
the number of configurations, obtained by all admitted substitutions, is equal, we result in 
the following expressions for the correlation functions: 
at an open boundary 

at a closed boundary 

Here N k r  is the number of configurations in the subset ski. 
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The spanning-tree representation of the subsets Si! is just the same as in the case of 
height probabilities. The substitution zb = k - 1 or zj, = I - 1 converts an arbitrary 
configuration C from the subset S, into a forbidden one. The appearing FSC has either 
a structure with two branches of the spanning tree. growing from the sites io and jo  or a 
structure with one branch covering both of these sites. 

Placing any pair of local tree diagrams which appear in our previous consideration 
of height probabilities at a distance r, we construct a local tree diagram for two-point 
correlation functions. In complete analogy with the case of height probabilities we may 
decompose these local tree diagrams into the non-local ones. The resulting linear system 
of equations is too large to be presented here. It is clear that the number of equations 
for two-point correlators is approximately the square of the number for height probabilities. 
Making use of MATHEMATICA [16] we may solve this system for any finite distance r .  Then, 
using asymptotic behaviour of the Green function (see [Ill): 
for open boundary conditions 

and for closed ones 
y 31n2 1 17 

(49) 
1 
IT x 2x 6xr2 %Oirr4 

Gciorcd(l, l ; r ) =  -- lnr-  - - - - - - - +... 
we can obtain the leading asymptotic term for two-point correlators presented in the 
introduction in formulae (9)-(24). 
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